Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus

نویسندگان

  • Wen-Xiong Wang
  • Raymond S. K. Wong
چکیده

We experimentally determined the assimilation efficiency (AE) of ingested prey, the uptake-rate constant from the aqueous phase, and elimination-rate constant of both inorganic Hg (Hg[II]) and methylmercury (MeHg) in a marine predatory fish, the sweetlips Plectorhinchus gibbosus, using radiotracer techniques. The AE of Hg(II) and MeHg ranged between 10 and 27% and between 56 and 95%, respectively, for 3 different prey (copepods, silverside, and brine shrimp). The ingestion rate of the fish did not significantly affect the AE of Hg(II). Uptake of both species of Hg proceeded in a linear pattern, and the calculated uptake-rate constant was 0.195 and 4.515 l g–1 d–1 for Hg(II) and MeHg, respectively. Most of the accumulated Hg(II) was distributed in muscle tissues, whereas the accumulated MeHg was distributed evenly between gills and muscle tissues. The calculated elimination-rate constants for MeHg were 0.0103 and 0.0129 d–1 following dietary and aqueous uptake, respectively, whereas the elimination-rate constant of Hg(II) following dietary uptake (0.0547 d–1) was 1.9 times higher than the elimination following aqueous uptake (0.0287 d–1). These experimentally determined values were incorporated into a kinetic model to predict the exposure pathways and the relative contribution of Hg(II) and MeHg to the sweetlips. At the high end of the bioconcentration factor for both species of Hg in the prey, dietary ingestion is likely to be the main channel for their accumulation in the fish. The relative contribution of Hg(II) vs MeHg to the overall Hg bioaccumulation is largely controlled by the relative concentration of MeHg dissolved in seawater. Similar to the results of numerous field studies, the kinetic model predicted a potential trophic transfer factor of <0.6 for Hg(II) and >1 for MeHg under conditions likely to be experienced by the fish in its natural environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hair Mercury Levels in Six Iranian Sub-populations for Estimation of Methylmercury Exposure: A Mini-review

Background: Mercury is widespread and persistent in the environment. One organic form of mercury, Methylmercury (MeHg), can accumulate in the food chain in aquatic ecosystems and lead to high concentrations of MeHg in fish, which, when consumed by humans, can result in an increased risk of adverse effects. Currently, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has established...

متن کامل

Biodynamic understanding of mercury accumulation in marine and freshwater fish

Mercury (Hg) is a global environmental pollutant that has been the cause of many public concerns. One particular concern about Hg in aquatic systems is its trophic transfer and biomagnification in food chains. For example, the Hg concentration increases with the increase of food chain level. Fish at the top of food chain can accumulate high concentrations of Hg (especially the toxic form, methy...

متن کامل

Meeting Report: Methylmercury in Marine Ecosystems—From Sources to Seafood Consumers

Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences-Superfund Basic Research Program workshop titled "Fate and Bioavailability of Mercury in Aquatic...

متن کامل

Concentrations of Some Trace Metals in the Tissues of Two Commercial Fishes from Tonekabon

In this study, concentrations of mercury (Hg) and 16 other elements as well as methylmercury speciation were quantified in muscle and liver of two commercial fish species. It was also our intention to evaluate potential risks to human health associated with seafood consumption. The fish species, Mullet and Kutum (Caspian White fish) fishes, were obtained from Tonekabon at the Iranian waters of ...

متن کامل

بررسی غلظت جیوه در آب و ماهی های سواحل جنوبی دریای خزر، ایران

Background and Objective: Mercury (Hg) contamination in marine ecosystems is a major threat to human health in the developing countries like Iran. The main route of mercury exposure is from consumption of fish and seafood. Upon entering mercury in human bodies, Hg is converted into methyl mercury, which may lead to serious implications including neurological disorders, reproductive abnormalitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003